海流作用下海底管道疲劳寿命分析

文/娄敏 董文乙

摘 要:本文建立海底管道振动微分方程,采用 Fluent 软件求解涡激振动升力系数,由时程分析法获得海底管

道动力响应,并运用线性累积损伤理论和 S-N 曲线法分析海底管道疲劳寿命。

关键词:海流 管道 疲劳寿命

随着陆上石油资源的减少,各国愈益重视海上油田的 开发,铺设了大量的海底管道。由于海床不平坦或海流对 不稳定海床的长期冲蚀以及内外流引起的管道振动等复杂 因素,不可避免地使海底管道出现悬空段。当海流流经管 道悬空段时,在一定的流速下会产生旋涡脱落,当结构自 振频率与旋涡脱落频率接近时,振动会迫使旋涡脱落频率 固定在结构自振频率附近,发生频率锁定(lock-in)现 象,引起管道横向振动加强。lock-in 现象会加速管道的 疲劳破坏,管道一旦发生破坏,不仅工程本身会蒙受损 失,还将引发严重的环境污染和次生灾害。

下面将建立海底管道振动微分方程,采用 Fluent 软件求解涡激振动升力系数,由时程分析法获得海底管道动力响应,并运用线性累积损伤理论和 S-N 曲线法分析海底管道疲劳寿命,得到一些有意义的结论。

数学模型

1、管道振动方程

海底管道涡激振动方程为:

$$m\frac{\partial^2 z}{\partial r^2} + (r_z + r_f)\frac{\partial z}{\partial r} + 2m_i V\frac{\partial^2 z}{\partial x \partial r} + \{(m_i V^2 + PA_i - T) + EI\frac{\partial^2}{\partial x^2}\}\frac{\partial^2 z}{\partial x^2} = \frac{\rho_e U^2 DC_L}{2}$$
(1)

式中 $m=m_i+m_r+m_f$, m_i 为单位长度管内流体质量, m_r 为单位长度管道质量, m_f 为流体作用在单位长度管道上的附加质量, $m_f=\frac{C_M m \rho_e D^2}{4}$, C_M 为附加质量系数, ρ_e 为管外流体密度, r_s 为管道结构阻尼系数, r_f 为流体阻尼系数,

 $\mathbf{r}_i = \gamma \mathbf{w}_i \mathbf{p}_e \mathbf{D}^2, \gamma$ 为系数, $\gamma = \frac{C_D}{4\pi C}$, C_D 拖曳力系数, S_t 为斯托哈

尔数, w_r 为旋涡脱落频率, $w_r = \frac{2\pi \delta_l U}{D}$, E为弹性模量, I为管道截面惯性矩, CL为流体对结构的瞬时升力系数,该系数由 Fluent 流体力学软件计算获得。

假定管道悬空段两端简支, 其边界条件为:

$$z(0,t) = z(L,t) = 0: \frac{\partial^2 z}{\partial y^2}\Big|_{x=0,x=L} = 0$$
 (2)

2、有限元离散

采用 Hermit 插值函数对方程 (1) 进行离散,得到立管运动方程的有限元形式:

$$[M]\{x\} + [C]\{x\} + [K]\{x\} = \{F\}$$
(3)

其中 [M] 为质量矩阵, [C] 为阻尼矩阵, [K] 为刚度矩阵, {F} 为荷载向量。

对于振动响应,采用 Newmark- β (时程分析法对方程(3) 进行求解即可得到。

对于海底管道的疲劳寿命,本文采用 S-N 曲线法和 线性累积损伤理论进行分析。

实例分析

将分析采用的参数见表 1 所示。

表1管道参数

管道直径	管道壁厚	管道弹性模量	管材屈服强度	腐蚀余量	制造公差	
D (m)	t (m)	$E(P_a)$	f_y (MP_a)	t _{corr} (m)	(m)	
0. 508	0.0064	2.06*10 11	422. 5	0.0005	0.0005	
制造系数	椭圆度	材料抗力系数	安全等级系数	管材泊松比	线膨胀系数	
a_{fab}	i			P		
1	0. 01	1. 15	1. 308	0.3	1.2*10^(-5)	

1、悬空长度对疲劳寿命的影响

本研究取存活率为99%所对应的P-S-N曲线,海流流 速为 0.6m/s, 管内压强为 6.6MPa, 在不同的悬空长度下管 跨的疲劳寿命如表 2 所示,从表中可以看出,随着管跨的 增加,疲劳寿命急速下降,当悬空长度为30米时,其疲 劳寿命为 4.3487e+011 年, 而当悬空长度达到 58 米时, 其疲劳寿命仅为 0.6716 年。究其原因为随着悬空长度的 增加,管跨的自振频率与漩涡脱落频率接近,引起管跨的 共振,导致疲劳寿命急剧降低。

表2悬空长度对管道疲劳寿命的影响 (确定性方法)

悬空 长度 (m)	24	25	26	28	30	32	33	34	55	57	58
疲劳	3, 11	1,46	7.06	1.70	4.34	1, 14	6,01	3, 12	563. 4127	55.9 0.1	0.65
寿命	47e+	77e+	50e+	96e+	87e+	46e+	17e+	63e+		712	16
(年)	013	013	012	012	011	011	010	010		112	10

2、流速对疲劳寿命的影响

本研究取存活率为99%所对应的P-S-N曲线,管跨 长度为25米,管内压强为6.6,在不同的流速下管跨的疲 劳寿命计算结果如表 3 所示, 从表中可以看出, 随着海流 流速的增加,疲劳寿命急速下降,当海流流速为0.8,其 疲劳寿命为 1.0257e+011 年, 而当流速达到 3.2m/s 时, 其 疲劳寿命仅为 0.6154 年。

表 3 海流流速对管跨疲劳寿命的影响 (确定性方法)

疲劳寿命(年)	1, 543 6e+01	1. 467 7e+01	1. 025 7e+01	2. 120 4e+00	8, 642 8e+00	5.588 2e+00	5. 059 0e+00	5. 880 4e+00	110. 4 750	0.615
海流流 連 (m/s)	0. 4			1. 0						

结论

采用 Hermit 插值函数对海底管道悬跨段振动方程进 行离散,得到振动方程的有限元形式,采用 Newmark 时 程分析法对振动方程进行求解,获得输气管道悬跨段动力 响应:根据动力响应的幅值和频率,采用S-N曲线法和 线性累积损伤理论,获得管跨段疲劳寿命。根据实例分析 得,海底管道悬跨段疲劳寿命随着悬跨长度和海流流速的 增加而减小,即悬跨长度越长、海流流速越大,管跨越易 发生疲劳失效。

(注:本文系山东省自然科学基金项目 (2009ZRA05080) 第一作者单位:中国石油大学(华东)石油工程学院)

