No. 2

蛋白质饲料的新资源——小白鼠对钝顶螺 旋藻(Spirulina platnsis)利用的初步研究

周爱堂

建景形

(南京大学生物系)

(江苏省张家莞市高级营养剂厂)

随行生命科学的发展和研究工作的深入,对实验动物的要求也在不断提高。而实验动物的优劣,与饲料的成份有密切的关系。开发资源丰富、营养价值高、所含成分合理、易被动物体所消化、吸收利用的新饲料资源,对发展实验动物生产具有极其重要的意义。

近年来,国内外大量研究工作指出,钝顶螺旋藻个体大、繁殖快,含有高达60%以上的蛋白质以及合理的氨基酸组份、细胞壁非纤维素质,易被动物体所消化吸收等特点,引起国内外学者的重视,是动物饲料的新资源。作者在螺旋藻系列应用研究的基础上,根据螺旋藻的营养特点,以同位素示踪法研究小自鼠对藻丝体的消化、吸收利用,目的在于为藻类的开发利用,寻找实验动物蛋白质饲料的新资源提供科学依据。

材料与方法

一、营养分析

取洗净的干款粉加 6 N 盐酸,抽真空,加温110 C水解24小时,以目立S₃₅₋₅₀型氨基 於自动分析仪测定氨基酸组份,以克氏定氮法测总氮。

二、纯顶螺旋藻的同位素标记

将扩大培养的螺旋蕊,以饥饿法加入含有1mci 的 K_2 ³² HPO_4 培养液,日夜光照培养48小时,然后将藻浓缩、洗涤,作适当稀释,测放射性强度备用。

三、动物准备

精选发育正常、体重20—24克的昆明种系小白鼠24头,雌雄兼用,均分 六组,每组 四头,每头动物间隔30分钟,分二次由口腔灌胃 2 × 0.5毫升藻液。在观察期间,饮食 任其 自由取食,其中五组经不同时间杀死取各组织,吸尽余血,称重制样测放射性强度,第六组则何养于特制代资笼内,收集48小时排泄物,制样测放射性强度,观察对藻丝体的利用效率。

结 果

一、营养成份

氨基酸组份及蛋白质测定结果见表 1 — 2。分析结果指出,藁丝体含有高 达66.22% 的 蛋白质,17种人体和动物所需要氨基酸,其中含有人体必须氨基酸八种以及多种维生素,这

1987年12月17日收到初稿。1988年4月9月收到修改稿。

表 1	纯顶螺旋藻	氨 基 酸 组 份	
百 其 啟	e a	奴 生 彪	ļ ,
	5.05	甲硫氨酸	1.11
恋 强 段	2.51	异亮氨酸	3.20
主 弘 下 位	2.26	延续 酸	4.97
各 红 72、	7.465	声 复 腔	0.23
膳 氨 改	1.89	苯丙氨酸	52.18
川 岚 克ィ	2.73	韓 奨 酸	2.57
再复版	4.38	坦 氨 酸	0.70
耽 氨 酸	0.17	精氨酸	3.81
承氨酸	4.03		
表 2	蛋 白 质	含 粒 %	
名 称	15.	t H	1 /i +1
	10.	6	66.22

作为实验动物的高蛋白质饲料提供了充分的生物化学依据。

二、动物活动情况观察

经多次灌胃的小白鼠,经饲养观察试验,动物一切正常,毛发光顺,活动自如,无足, 链、嗜睡现象,排泄物无异常。

三、动物解剖观察

动物经灌胃后,经不同时间杀死剖腹,证实藻丝体正确无误地灌入胃内,随观察时间的 淮迟,胃内藻丝体被消化吸收。在整个消化道中,由开始镜检见到完整的藻丝体到下消化道 的模糊状及糜状物,说明动物对藻丝体能很好地进行消化吸收,消化后的营养物质能运转于 各组织,为机体所利用。

四、动物对藻丝体的利用效率

动物对藻丝体的利用效率见表 3 , 动物在48小时内对藻丝体的利用效率可达67%, 这与解剖观察所见是相一致的。

表 3	
-----	--

小白鼠对藻丝体的利用

口服量(cpm)	排出量(cpm)	排 出 %	利 周 %
2.3 / 105	0.96×10 ⁵	33	67

五、动物血液放射性强度的动态变化

动物口服藥丝体后,经消化、吸收,首先进入血液。从整个观察期来看,动物在5小时前血液放射性强度为最高。由此可以说明,藥丝体易被动物体所消化吸收,直到15小时后放缓慢下降。直到48小时血液放射性仍保持一定的强度。

六、蒸丝体在动物体内的代谢动态

动物口服藻丝体后,经不同时间断头取血,剖腹取各组织,吸尽余血,称重制样测放射性强度,结果见表4,图2。

長 1	小白!	小白鼠对钝顶螺旋藻的代谢动态			单位: cpm/100毫克		
如 使 时 机 上)	5	15	25	35	-16		
it	2054	1370	1517	1827	671		
75	2406	å52	283	747	72:1		
Ħ	1440	789	539	584	301		
心	1276	422	355	247	119		
[4 2	680	554	493	460	416		
TI ('a	214	345	367	270	260 		

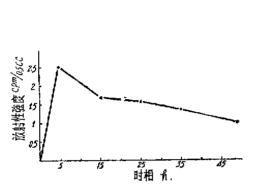


图 1 小白鼠血液放射性强度动态变化

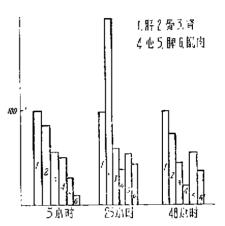


图 2 以肝脏放射性强度为100计 同各组织强度比较

实验结果指出,动物口服藥丝体后,经消化、吸收,由血液运转而广泛分布于机体各组织、器管,从分布来看是不均匀的,以骨骼、肝脏、肾脏为最高。其次为心脏、脾脏、肌肉。而且以 5 小时前各组织中放射性强度为最高,这与血液中所得结果是相一致的,直到35 小时方明显下降。骨骼为磷酸盐所组成,能吸收较多的磷,而且通过机体组织的 运转再分配,其放射性含量一直保持较高的强度,肝脏为营养物质的贮存库,消化吸收后的营养物质,除部分运转于全身各组织器管外,将有很大部分贮存于肝脏,故在整个观察期保持较高的放射性水平。肾脏为排泄器管,未能吸收利用的部分,除通过粪便排出体外,其余主要通过肾脏而由尿液排出,心脏、脾脏、肌肉等组织是营养物质输送经过的途径,其放射性强度较低,而且少有波动,随观察时间的延长而逐步减弱。总之,实验结果可以清楚说明,动物口服钝顶螺旋藻后,能很好地被消化、吸收,为机体所利用,参与机体正常的代谢过程。

讨论与小结

1. 动物口服实验材料,方式多样,有掺入饲料供其自由取食,也可人工灌胃而引入体内。本实验曾以普通藻粉以2-5%的比例掺入饲料,让动物自由取食,动物虽然喜食,但饲料损失较大。口服藻粉无法定量计算,而且以同位素标记的菜丝体更不能掺入饲料,让其自由取食,否则会扩大放射性污染,造成动物间的相互接触污染,引起实验结果的混乱,这

是本实验采用人工灌胃的意图所在。在灌胃中,考虑到小自鼠胃容量小的特点,采用分二次 溢入,以最后一次开始计算时间,在灌服后未发现动物有异常情况。

- 2. 螺旋藻含有大量的蛋白质、多种氨基酸、维生素^{C40},对大白鼠及其它动物试验也证明无异常现象或中毒反应^{C50},因此从多方面来看钝顶螺旋藻是一种理想的饲料及食品添加剂。本文也通过48小时观察,证实藻丝体能被动物很好地消化吸收,参与机体的代谢、这为螺旋藻的广泛应用提供了充分的消化生理依据。但作为饲料以添加多大的比率方能达到最大利用效率,有利于动物的生长尚有待于进一步研究。
- 3. 钝顶螺旋藻性喜热, 好碱性环境, 因此利用工厂公气、公热来培养生产藻粉, 这样可以不受气候条件的影响, 又可减少投资, 降低成本, 这是开辟植物蛋白资源的有效方法, 也是解决实验动物词料的有效途径之一。

参考文献

- 〔1〕周爱堂,1986,上海畜牧兽医通讯,6。
- [2] 周爱堂, 1986, 江苏水产科学, 3。
- [3] 农牧渔业部螺旋藻协作组,江西农科院情报所1985兰藻——Spiralina platensis.开发刊用与生物技术资料汇编。
- (4) Narasimha. D. L. R. G. S. Vonkataramanetal. 1982. Nutritional quality of the blue-green algae Spirulina platensis. J. Sci. Food Agric. 33(5): 456-460.
- [5] Santillan. C. 1982. Mass production of Spiraling. Experientia 38: 40-43.

STUDIES OF UTILIZATION ON THE SPIRULINA PLATENSIS BY MICE

Zhou Aitang
(Department of Biology, Nanjing University)

Zhang jingxiang (Zhang Jiagang City Superior Nutrient Works)

Abstract

In this paper we are going to discuss the utilization on the *spirulina platensis* by mice using isotope tracing technique. The result of our experiment shows that *Spirulina platensis* are digested and absorbed by mice very well and its digestive rate is about 67%.