43 10 Vol.43 No.10
28 2017 10 TECHNOLOGY OF WATER TREATMENT Oct., 2017
DOI:10.16796/j.cnki.1000-3770.2017.10.007
200092
1 2 o
N 50%
50% N
2
° 70% 2
2 34.35% . o
2
P747.7 A 1000-3770(2017)10-0028-005
1
’ 1.1
50%~60% 1 ) )
[1]O
Bk
13
—_ : -t 4 14
o 01 11 12
21 | Y11, RIl Y, R Y2, R2
1 2
Fig.1 Schematics of two-pass SWRO system with two stages for the
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Fig.3 Contour planes of general water recovery dependence on the

operating parameters
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Numerical Computation of Design Parameters for Two-pass SWRO Desalination System with Two Stages

LU Bin, YANG Zhifeng, SHEN Xiaohong, WANG Ruhua
(Shanghat Municipal Engineering Design Institute (Group) Co. Ltd., Shangha 200092, China)

Abstract: A mathematical model for SWRO desalination system was established in this study, and it was carried out the computational analysis of the
mathematical model for two-pass SWRO desalination system. The results indicated that, the lower general specific energy consumption could be obtained
located on the lower water recovery (less than 50%) of the first pass reverse osmosis with all two stages and the higher water recovery (larger than 50%)
of the second pass reverse osmosis. The general water recovery was increased with the increase of reverse osmosis recovery of the first pass with all two
stages and the second pass. But the first pass reverse osmosis with the second stage presented more powerful effect to the general water recovery. The
optimal operating parameters of reverse osmosis membranes could be estimated by the point of tangency between the contour planes of the general specific
energy consumption and general water recovery. When the higher general water recovery was required, 70% for example, the two-pass SWRO desalination
system with two stages presented 34.35% lower general specific energy consumption than conventional two-pass SWRO desalination system without
stages. This mathematical method provided a reference for engineering design of SWRO system.

Keywords: seawater desalination; two-pass membrane with two stages; reverse osmosis; specific energy consumption; water recovery; system design
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Multi-objective Optimization of Seawater Reverse Osmosis Desalination Systems
with Spiral Wound Membrane Element under Boron Restrictions

DU Yawei', XIE Lixin*), GUO Xiaojun', LIU Yan', ZHAO Yingying', ZHANG Shaofeng*
(1.Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Marine Science and Engineering, Hebei
University of Technology, 300130;  2.School of Chemical Engineering, Tianjin University, 300072;
3.Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, 300072;
4.School of Chemical Engineering, Hebei University of Technology, 300130: Tianjin, China)

Abstract: The multi-objective optimization of SWRO network with spiral wound membrane element under boron restrictions was studied in this paper.
Irreversible thermodynamic model was employed to describe the membrane transport behavior of salt and boron. Constraints for the system flow and
operation conditions were added to guarantee safely operating of the RO system. Augmented g-constraint method was proposed to solve the MOO problem.
A fuzzy decision maker was used to select the most efficient solution among Pareto-optimal solutions. For the given project specifications, two-pass RO
systems were selected, the MOO optimal process configurations achieved to produce potable water with the cost of 0.72~0.97 $/m?* and a specific electricity
consumption of 3.09~3.96 kW h/m°®. The system recovery rate increased with the decrease of water cost. For the first RO pass, the number of pressure
vessels decreased gradually, both the operating pressure and the maximum flux in the pressure vessels increased accordingly. For the second pass, there
were no much changes for the parameters mentioned above. The pH of influent in the second pass kept between 10.4~11.0 to guarantee the boron removal.
The cost breakdown of these optimal configurations showed that keeping the average permeate flux of 14.0 L/(m?-h) in the first pass could keep a balance
between economic and energy consumption.

Keywords: reverse osmosis; seawater desalination; boron; networks; multi-objective optimization



